Development/Python
2BPerfect...16
Kirok Kim
2022. 1. 29. 11:29
Pandas exercise
# ๊ฐ ์กฐ๊ฑด ๋ฉ์๋
tit[tit['Pclass'].isin([๊ฐ,๊ฐ])]
# ๋ฐ๋ ์กฐ๊ฑด
tit[~tit['Pclass'].isin([1,2])]
#pd.cut(Seriesdata,๊ฒฝ๊ณ๊ฐ๋ฆฌ์คํธ,labels=๊ตฌ๊ฐ๋ณ๋ณ ์ด๋ฆ๋ฆฌ์คํธ)
pd.cut(
tit['Age'],
[0,15,25,45,60,100],
labels=['์์','์ฒญ๋
','์ฅ๋
','์ค๋
','๋
ธ๋
']
)
tit['Embarked']=tit['Embarked'].fillna(emax)
tit[tit['Age'].isna()]
tit.sort_values(['Pclass','Age'],ascending=[False,True])
pd.set_option('display.max_rows',200)#์ ํ ๋๋ฆฌ๊ธฐ
s2021['dept_nm_lvl_2'].value_counts()
s2021['dept_nm_lvl_2'].unique()
DataFrame_data.pivot_table(values=None,index=None,columns=None,aggfunc='mean')
values: ํต๊ณ๋ผ ๋์ ์ด(['Survived'])
index: ๊ทธ๋ฃนํ ๋์ ์ด
column ๊ทธ๋ฃนํ ๋์ ์ด
aggfunc:์ ์ฉํ ํต๊ณํจ์ ๊ธฐ๋ณธ๊ฐ mean
#์ฑ๋ณ ์์กด์จ
pd.pivot_table(values='Survived',index='Sex',data=tit)
or
tit.pivot_table(values='Survived',index='Sex')
# ์น๊ฐ ๋ฑ๊ธ๋ณ ์ฑ๋ณ ์์กด์จ
pd.pivot_table(values='Survived',index=['Pclass','Sex'],data=tit)
# ์น๊ฐ ๋ฑ๊ธ๋ณ ์ฑ๋ณ ์์กด์จ
pd.pivot_table(values='Survived',index='Pclass',columns='Sex',data=tit)
๋ฐ์ํ