์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- ์ฐธ์กฐ ๋ณ์
- java
- ์์ด
- ์ต์
- BFS
- ์๋ฐ
- PYTHON
- dacon
- ์ง ๊ฐ ์์ธก ๋ถ์
- Do_it
- np.zeros_like
- mysql
- ํ์ ๋ณ์
- ๋ค์ต์คํธ๋ผ ์๊ณ ๋ฆฌ์ฆ
- sql
- jdbc
- matplotlib
- 2BPerfect
- ๋ฐฑ์ค
- ํ๋ก๊ทธ๋๋จธ์ค
- ๋ฐ์ค๊ทธ๋ํ
- ์ด๊ฒ์ด ์ทจ์ ์ ์ํ ์ฝ๋ฉํ ์คํธ๋ค
- Extended Slices
- ์ ํ ํฌ ํ์ด์ฌ
- ์ด์ง์ ๋ณํ
- MacOS
- DFS
- ํฉํ ๋ฆฌ์ผ ์ง๋ฒ
- Do it
- ๋ธ๋ผ์ฐ์ ์คํ
- Today
- Total
๋ชฉ๋กDFS (3)
๐ฆ ๊ณต๋ฃก์ด ๋์!
์ ์ฒด ์ฝ๋ def solution(numbers, target): def dfs(result,n): if n==len(numbers): if result==target: return 1 return 0 return dfs(result+numbers[n],n+1)+dfs(result-numbers[n],n+1) return dfs(0,0) ์ฝ๋ ๋ฆฌ๋ทฐ def dfs(result,n): # ํ๊ฒ๋๋ฒ๋ฅผ dfs๋ก ํธ๋ ์ด์ ๋ numbers๋ฅผ ๊ฐ์ง๊ณ +, - ์ฐ์ฐ๋ง์ผ๋ก target์ ๋๋ฌํด์ผ ํ๊ธฐ ๋๋ฌธ์ dfs๋ก ํด๊ฒฐ if n==len(numbers): # numbers ์์๋ฅผ ๋ค ์ฐ์ฐํ๊ณ if result==target: # n[0]๊ฐ -์ผ ๋์ +์ผ ๋๋ก ๋๋๊ณ ๋ค์ ์ธ๋ฑ์ค์ ๊ฐ ๋ํ +,-๋ก ๋๋์ด ์ฐ์ฐํ r..
์ ์ฒด ์ฝ๋ n=int(input()) e=int(input()) matrix=[[0]*(n+1) for i in range(n+1)] visited=[False]*(n+1) a=-1 for i in range(e): x,y=map(int,input().split()) matrix[x][y]=matrix[y][x]=1 def dfs(v): global a visited[v]=True a+=1 for i in range(1,n+1): if not visited[i] and matrix[v][i]==1: dfs(i) return a print(dfs(1)) ์ฝ๋๋ฆฌ๋ทฐ ## ์ ๋ ฅ๊ฐ n=int(input()) e=int(input()) ## ํ๋ ฌ๋ก ๋ง๋ค๊ธฐ matrix=[[0]*(n+1) for i in range(..
์ ์ฒด ์ฝ๋ from collections import deque N, M, V=map(int,input().split()) matrix=[[0]*(N+1) for i in range(N+1)] visited=[False]*(N+1) for i in range(M): x,y=map(int,input().split()) matrix[x][y]=matrix[y][x]=1 def dfs(matrix,V,visited): visited[V]=True print(V,end=' ') for i in range(1,N+1): if not visited[i]and matrix[V][i]==1: dfs(matrix,i,visited) def bfs(matrix,V,visited): queue=deque([V]) visit..