์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- ํฉํ ๋ฆฌ์ผ ์ง๋ฒ
- jdbc
- ์ง ๊ฐ ์์ธก ๋ถ์
- ๋ธ๋ผ์ฐ์ ์คํ
- ์ ํ ํฌ ํ์ด์ฌ
- mysql
- ๋ฐ์ค๊ทธ๋ํ
- np.zeros_like
- sql
- BFS
- Do_it
- ์ฐธ์กฐ ๋ณ์
- Extended Slices
- ์ด์ง์ ๋ณํ
- ๋ค์ต์คํธ๋ผ ์๊ณ ๋ฆฌ์ฆ
- MacOS
- DFS
- dacon
- matplotlib
- PYTHON
- ์ต์
- ๋ฐฑ์ค
- java
- ์์ด
- ์๋ฐ
- ์ด๊ฒ์ด ์ทจ์ ์ ์ํ ์ฝ๋ฉํ ์คํธ๋ค
- Do it
- 2BPerfect
- ํ๋ก๊ทธ๋๋จธ์ค
- ํ์ ๋ณ์
- Today
- Total
๋ชฉ๋กData (9)
๐ฆ ๊ณต๋ฃก์ด ๋์!

์๊ด๊ด๊ณ ์๊ฐํ 1์ฅ ๋ถ๋ถ # ๋จผ์ ์๊ด๊ณ์ ๊ณ์ฐ์ ์ํด ํ ์คํธ ํ์์ ๋ฐ์ดํฐ๋ฅผ ์ซ์๋ก ๋ณํํด์ค. from sklearn.preprocessing import LabelEncoder # ๋ฅ ๋ณต์ฌ corr_df = data.copy() corr_df[corr_df.columns[corr_df.dtypes=='O']] = corr_df[corr_df.columns[corr_df.dtypes=='O']].astype(str).apply(LabelEncoder().fit_transform) corr_df['Exter Qual'].unique() ## ์๊ด๊ด๊ณ๋ฅผ ๋ถ์ํด๋ณด๋ฉด ๋ฐ๋น๋ก์ ์์๊ฐ ๋ง์ #์ด ๋ถ๋ถ์ sklearn์ ํตํด ์ ๋๋ก ๋ ์์นํ๊ฐ ์ด๋ฃจ์ด์ง์ง ์์๋ค๊ณ ์๊ฐํจ. corr_df.info() ๊ฐ์ ๋ ์ฝ๋..

์์นํ๋ฐ์ดํฐ ๋ฐ ๋ช ๋ชฉํ ๋ฐ์ดํฐ ์๊ฐํ #์์นํ ๋ฐ์ดํฐ numeric_feature = data.columns[(data.dtypes==int) | (data.dtypes== float)] # ์นดํ ๊ณ ๋ฆฌํ ๋ฐ์ดํฐ categorical_feature = data.columns[data.dtypes=='O'] import matplotlib.pyplot as plt %matplotlib inline plt.style.use("ggplot") feature = numeric_feature # Boxplot ์ ์ฌ์ฉํด์ ๋ฐ์ดํฐ์ ๋ถํฌ๋ฅผ ์ดํด๋ด ๋๋ค. plt.figure(figsize=(20,15)) plt.suptitle("Boxplots", fontsize=40) for i in range(len(feature))..
๋ช ๋ชฉํ ๋ฐ์ดํฐ ๋ณํ ๋ฐ ํํธ๋งต์ ์์ธํ ๋ด์ฉ์ 3์ฅ์์ ๋ค๋ฃฐ ์์ ์ต์(์ฐ๊ตฌ์ค) !pip install pandas !pip install numpy !pip install matplotlib !pip install seaborn !pip install sklearn import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder # 1. train.csv : ํ์ต ๋ฐ์ดํฐ # id : ๋ฐ์ดํฐ ๊ณ ์ id # OverallQual : ์ ๋ฐ์ ์ฌ๋ฃ์ ๋ง๊ฐ ํ์ง # YearBuilt : ์๊ณต ์ฐ๋ # YearRemodAdd : ..
SQL...2 SQL CLI insert into CLI๋ฅผ ํตํด ๊ฐ์ ๋ฃ์ ๋ ์ฐ๋ฉฐ insert into 'table ๋ช ' (๊ฐ,๊ฐ,๊ฐ,๊ฐ)-> ์ค์ ํ table์ ๊ฐ์ ๋ฃ๋๋ค values(0,0,0,0); insert into member (no,name,tel,intro) values(1,'ํ๊ธธ๋','010-111','์ฒซ ๋ฒ์จฐ ์ ์ '); insert into member (no,name,tel,intro) values(2,'๊น๊ธธ๋','010-222','๋ ๋ฒ์งธ ์ ์ '); select*from member; insert into book (isbn,title,publisher,author,price) v..

Select ์ปฌ๋ผ from ์คํค๋ง.ํ ์ด๋ธ where population between 1000000 and 2000000 ์ซ์ ์ฐ์ฐ์ = '! = ' > (select population from city where name ='Seoul'); select * fr..

fig, axes = plt.subplots(4, 3, figsize=(25, 15)) fig.suptitle('feature distributions per quality', fontsize= 40) for ax, col in zip(axes.flat, train.columns[1:]): sns.violinplot(x= 'quality', y= col, ax=ax, data=train) ax.set_title(col, fontsize=20) plt.tight_layout() plt.show() sns.color_palette("Set2") fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize = (30, 9)) scatter_fix = sns.histplot(data..