๊ด€๋ฆฌ ๋ฉ”๋‰ด

๐Ÿฆ• ๊ณต๋ฃก์ด ๋˜์ž!

2BPerfect...16 ๋ณธ๋ฌธ

Development/Python

2BPerfect...16

Kirok Kim 2022. 1. 29. 11:29
Pandas exercise
# ๊ฐ’ ์กฐ๊ฑด ๋ฉ”์„œ๋“œ
tit[tit['Pclass'].isin([๊ฐ’,๊ฐ’])]
# ๋ฐ˜๋Œ€ ์กฐ๊ฑด
tit[~tit['Pclass'].isin([1,2])]

#pd.cut(Seriesdata,๊ฒฝ๊ณ„๊ฐ’๋ฆฌ์ŠคํŠธ,labels=๊ตฌ๊ฐ„๋ณ„๋ณ„ ์ด๋ฆ„๋ฆฌ์ŠคํŠธ)
pd.cut(
    tit['Age'],
    [0,15,25,45,60,100],
    labels=['์†Œ์•„','์ฒญ๋…„','์žฅ๋…„','์ค‘๋…„','๋…ธ๋…„']
)

tit['Embarked']=tit['Embarked'].fillna(emax)

tit[tit['Age'].isna()]

tit.sort_values(['Pclass','Age'],ascending=[False,True])

pd.set_option('display.max_rows',200)#์ œํ•œ ๋Š˜๋ฆฌ๊ธฐ
s2021['dept_nm_lvl_2'].value_counts()

s2021['dept_nm_lvl_2'].unique()

DataFrame_data.pivot_table(values=None,index=None,columns=None,aggfunc='mean')
values: ํ†ต๊ณ„๋‚ผ ๋Œ€์ƒ ์—ด(['Survived'])
index: ๊ทธ๋ฃนํ•  ๋Œ€์ƒ ์—ด
column ๊ทธ๋ฃนํ•  ๋Œ€์ƒ ์—ด
aggfunc:์ ์šฉํ•  ํ†ต๊ณ„ํ•จ์ˆ˜ ๊ธฐ๋ณธ๊ฐ’ mean

#์„ฑ๋ณ„ ์ƒ์กด์œจ
pd.pivot_table(values='Survived',index='Sex',data=tit)
or
tit.pivot_table(values='Survived',index='Sex')

# ์Šน๊ฐ ๋“ฑ๊ธ‰๋ณ„ ์„ฑ๋ณ„ ์ƒ์กด์œจ
pd.pivot_table(values='Survived',index=['Pclass','Sex'],data=tit)

# ์Šน๊ฐ ๋“ฑ๊ธ‰๋ณ„ ์„ฑ๋ณ„ ์ƒ์กด์œจ
pd.pivot_table(values='Survived',index='Pclass',columns='Sex',data=tit)

๋ฐ˜์‘ํ˜•

'Development > Python' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

2BPerfect...18  (0) 2022.02.03
2BPerfect...17  (0) 2022.02.02
2BPerfect...15  (0) 2022.01.28
2BPerfect...14  (0) 2022.01.27
2BPerfect...13  (0) 2022.01.27
Comments