๋ฐ์ํ
Notice
Recent Posts
Recent Comments
Link
์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- np.zeros_like
- ์๋ฐ
- ์ด๊ฒ์ด ์ทจ์ ์ ์ํ ์ฝ๋ฉํ ์คํธ๋ค
- ํฉํ ๋ฆฌ์ผ ์ง๋ฒ
- Do it
- ์ด์ง์ ๋ณํ
- ํ๋ก๊ทธ๋๋จธ์ค
- mysql
- Extended Slices
- ๋ธ๋ผ์ฐ์ ์คํ
- sql
- DFS
- ๋ฐ์ค๊ทธ๋ํ
- ๋ค์ต์คํธ๋ผ ์๊ณ ๋ฆฌ์ฆ
- java
- ํ์ ๋ณ์
- 2BPerfect
- ์ฐธ์กฐ ๋ณ์
- matplotlib
- dacon
- ์ง ๊ฐ ์์ธก ๋ถ์
- ์์ด
- ๋ฐฑ์ค
- ์ต์
- BFS
- ์ ํ ํฌ ํ์ด์ฌ
- jdbc
- Do_it
- PYTHON
- MacOS
Archives
- Today
- Total
๐ฆ ๊ณต๋ฃก์ด ๋์!
Dacon ์์ธํ์ง ๊ฒฝ์ง๋ํ...2 ๋ณธ๋ฌธ
ํด๋์ค ๋ถํฌ ํ์ธ
counted_values = train['quality'].value_counts()
plt.style.use('ggplot')
plt.figure(figsize=(12, 10))
plt.title('class counting', fontsize = 30)
value_bar_ax = sns.barplot(x=counted_values.index, y=counted_values)
value_bar_ax.tick_params(labelsize=20)
์์ธ ํ์ง๋ณ ๊ณ ์ ํน์ฑ ํ์ธ
qualities = {}
for i in range(4, 9):
quality_description = train[train['quality'] == i].drop(['id', 'quality'], axis=1).describe()
if i == 4:
means = pd.DataFrame({i: quality_description.loc['mean']})
else:
mean = pd.DataFrame({i: quality_description.loc['mean']})
means = pd.concat([means, mean], axis=1)
means = means.T
fig, axes = plt.subplots(4, 3, figsize=(25, 15))
fig.suptitle('mean values per quality', fontsize= 40)
for ax, col in zip(axes.flat, means.columns):
ax.plot([4,5,6,7,8], means[col])
ax.scatter([4,5,6,7,8], means[col])
ax.set_title(col, fontsize=20)
plt.setp(axes, xticks=[4, 5, 6, 7, 8])
plt.tight_layout()
plt.show()
๋ฐ์ํ
'Data > Dacon' ์นดํ ๊ณ ๋ฆฌ์ ๋ค๋ฅธ ๊ธ
์ง ๊ฐ ์์ธก ๋ถ์...3 (0) | 2022.02.08 |
---|---|
์ง ๊ฐ ์์ธก ๋ถ์...2 (0) | 2022.02.08 |
์ง ๊ฐ ์์ธก ๋ถ์...1 (0) | 2022.02.03 |
Dacon ์์ธ ํ์ง ๊ฒฝ์ง๋ํ...3 (0) | 2021.12.10 |
Dacon ์์ธ ํ์ง ๊ฒฝ์ง๋ํ (0) | 2021.12.06 |
Comments